





## The use of fluorosulfuric acid, magic acid and liquid antimony(V) fluoride as media to generate, stabilize and study metal carbonyl cations

M. Bodenbinder a, H. Willner a,\*, F. Aubke b

Keywords: Fluorosulfuric acid; Magic acid; Antimony(V) fluoride; Metal carbonyl cations; NMR spectroscopy; IR spectroscopy; Synthesis

With synthetic routes to the unusual non-classical metal carbonyl cations [1], i.e.  $[Au(CO)_2]^+$  [2,3],  $[M(CO)_4]^{2+}$  (M=Pd or Pt) [4,5], cyclo- $[Pd_2(\mu-CO)_2]^{2+}$  [6], and to the fluorosulfate derivatives  $Au(CO)SO_3F$  [2] and cis- $M(CO)_2(SO_3F)_2$  [7] (M=Pd or Pt) established, we wish to focus attention on their spectroscopic, structural and bonding features, and provide a rationale for their existence in highly acidic media.

Most notable is the shift of  $\bar{\nu}(CO)$  to higher wavenumbers relative to CO itself and the very high CO stretching force constants  $f_r$ , summarized in Table 1. Likewise, the <sup>13</sup>C chemical shifts in the NMR spectra of isotopically enriched species are shifted to lower frequencies relative to CO, while classical transition-

Table 1 Bonding properties of CO in noble metal carbonyls and related species

| Compound                     | ν<br>(cm <sup>-1</sup> ) | $10^2 f_{\rm r}$ (N m <sup>-1</sup> ) | <i>r</i><br>(pm) |
|------------------------------|--------------------------|---------------------------------------|------------------|
|                              |                          |                                       |                  |
| CO <sup>+</sup>              | 2184                     | 19.3                                  | 111.5            |
| NaCl(100)···CO               | 2155                     | 18.8                                  |                  |
| FH···CO                      | 2162                     | 18.9                                  |                  |
| HCO+                         | 2184                     | 21.3                                  | 110.5            |
| Cu(CO)AsF <sub>6</sub>       | 2180                     | 19.2                                  |                  |
| $[Ag(CO)_2][B(OTeF_5)]$      | 2200                     | 19.5                                  | 108.0            |
| $[Au(CO)_2][Sb_2F_{11}]$     | 2235                     | 20.1                                  |                  |
| Au(CO)Cl                     | 2163                     | 18.9                                  | 111.3            |
| $[Pd(CO)_4][Sb_2F_{11}]_2$   | 2259                     | 20.6                                  |                  |
| $Pd(CO)_2(SO_3F)_2$          | 2218                     | 19.8                                  | 110.8            |
| $[Pt(CO)_4][Sb_2F_{11}]_2$   | 2261                     | 20.6                                  |                  |
| $[Hg(CO)_2][Sb_2F_{11}]_2$   | 2280                     | 21.0                                  | 110.4            |
| $[Hg_2(CO)_2][Sb_2F_{11}]_2$ | 2248                     | 20.4                                  |                  |

<sup>\*</sup> Corresponding author.

metal carbonyls resonate at higher frequencies [8]. It appears that metal-to-CO  $\pi$ -back-donation is drastically reduced with increasing charge on the central metal and decreasing basicity of the counteranion.

Two recent molecular structures determined by us support this view. In  $[Pd_2(\mu\text{-CO})_2](SO_3F)_2$  [6], a cyclic  $[Pd_2(\mu\text{-CO})]^{2+}$  cation with symmetrically bridging CO groups and short CO bonds is found. In this cation,  $\bar{\nu}_{av}(CO)$  is, at 2002 cm<sup>-1</sup>, about 200 cm<sup>-1</sup> higher than in classical metal carbonyls [9]. In cis-Pd(CO)<sub>2</sub>(SO<sub>3</sub>F)<sub>2</sub> [10], terminal CO groups with very short CO bond distances are encountered. More significantly, interand intra-molecular  $SO \cdots CO$  contacts between the carbonyl cation and terminal oxygens of the fluorosulfate group are observed and appear to provide some charge compensation for the C atom.

It appears that in these predominantly  $\sigma$ -bonded carbonyls, secondary contacts in the solid state and solvation in strong acidic media provide stabilization for the electrophilic carbon.

It is concluded that without significant  $\pi$ -back-donation and a failure of the 18-electron rule, not only transition and noble metals should form stable carbonyl derivatives. We have very recently reported on the first syntheses of post-transition-metal carbonyl cations  $[Hg(CO)_2]^{2+}$  and  $[Hg_2(CO)_2]^{2+}$  [11]. Both cations are stabilized by  $Sb_2F_{11}^-$  anions; their  $\bar{\nu}(CO)$  and  $f_r$  values are included in Table 1.

## Acknowledgement

Financial support by NSERC, DFG and NATO is gratefully acknowledged.

Institut f
ür Anorganische Chemie der Universit
ät Hannover, Callinstr. 9, D-30167 Hannover, Germany
 Department of Chemistry, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada

## References

- F. Aubke, 'George H. Cady Symposium on Inorganic Chemistry', 207th ACS Nat. Meet., San Diego, CA, 13-17 March 1994.
- [2] H. Willner and F. Aubke, Inorg. Chem., 29 (1990) 2195.
- [3] H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter and F. Aubke, J. Am. Chem. Soc., 114 (1992) 8972.
- [4] G. Hwang, C. Wang, F. Aubke, M. Bodenbinder and H. Willner, Can. J. Chem., 71 (1993) 1532.
- [5] G. Hwang, M. Bodenbinder, H. Willner and F. Aubke, *Inorg. Chem.*, 32 (1993) 4667.
- [6] C. Wang, M. Bodenbinder, H. Willner, S. Rettig, J. Trotter and F. Aubke, *Inorg. Chem.*, 33 (1994) 779.
- [7] C. Wang, M. Bodenbinder, H. Willner and F. Aubke, J. Fluorine Chem., 66 (1994) 167.
- [8] B.E. Mann, Adv. Organomet. Chem., 12 (1974) 135.
- [9] P.S. Braterman, Metal Carbonyl Spectra, Academic Press, New York, 1975.
- [10] C. Wang, H. Willner, M. Bodenbinder, R.J. Batchelor, F.W.B. Einstein and F. Aubke, *Inorg. Chem.*, 33 (1994) 3521.
- [11] H. Willner, M. Bodenbinder, C. Wang and F. Aubke, J. Chem. Soc., Chem. Commun., (1994) 1189.